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A new three-dimensional (3D) periodic dielectric structure constructed with layers
of dielectric rods of circular, elliptical, or rectangular shape is introduced. This new
structure possesses a full photonic band gap of appreciable frequency width. At midgap,
an attenuation of 21 dB per unit cell is obtained. This gap remains open for refractive
indices n = 1.9. Furthermore, this new 3D layer structure potentially has the additional
advantage that it can be easily fabricated using conventional microfabrication techniqiies on

the scale of optical wavelengths.

. It is now well accepted that the existence, in periodic
dielectric structures, of a frequency gap where the
propagation of electromagnetic (EM) waves is forbidden for
all wave vectors, can have a profound impact on several
scientific and technical disciplineslv2 It is, therefore, very
important to find 3D and 2D periodic structures that possess
a full photonic band gap and can be easily fabricated
experimentally.  Yablonovitch and Gmitter3 have
demonstrated the soundness of the basic idea of photonic
bands in 3D periodic structures in an experiment using
microwave frequencies, where a pseudogap was obtained
for the face-centered-cubic (fccg structure. Theoretical
calculations of Ho, Chan, and Soukoulis in 3D have shown
that periodic dielectric materials with a diamond* or
diamond-like structureS can indeed have photonic band
gaps. One of these structures, the “3-cylinder structure”
consisting of three sets of cylinders drilled into a dielectric
material at 35.26 degrees off normal, has been fabricated®
in the millimeter length scale and shown to exhibit a full
photonic gap in the . microwave region, in agreement with
theoretical predictions.56 This is a successful example
where theory was used to design dielectric structures with
desired properties. Narrow photonic band gaps have also
been found? in a simple cubic geometry. For 2D systems, 8-
10 theoretical studies8-9 have shown that a triangular lattice
of air columns in a dielectric background is the best overall
2D structure, which gives the largest photonic gap with the
smallest index contrast. In addition, it was
demonstrated11-14 that lattice imperfections in a 2D and/or
" 3D periodic arrays of a dielectric material can give rise to
fully localized EM wave functions. Experimental
investigations of the photonic band gaps have been mostly
done6:11,13,14 at microwave frequencies because of the
difficulty in fabricating ordered dielectric structures at
optical length scales. In fact, the main challenge in the
photonic band gap field is the discovery of a 3D dielectric
structure that exhibits a photonic gap, which can be built by
microfabrication techniques on the scale of optical
wavelengths.

In this paper, we introduce a new 3D layer periodic
structure that possesses a full photonic band gap and at the
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same time is easier to fabricate on the scale of optical
wavelengths. The photonic band gap problem is solved
with the plane-wave expansion method, and the technical
details can be found elsewhere. In addition, the
transmission coefficient versus the incident frequency is
calculated with the recently developed method of Pendry
and MacKinnon.5 The transmission studies give also the
attenuation and can be directly compared with experiment.

The new structure is made of layers of dielectric
rods with a stacking sequence that repeats itself every four
layers with a repeat distance of c. Within each layer, the
rods are arranged with their axes_ parallel and separated by a
distance, a. The orientations of the axes are rotated by 90
degrees between adjacent layers. To obtain a periodicity of
four layers in the direction of stacking, the rods of second
neighbor layers are shifted by a distance of 0.5a in the

direction perpendicular to the rod axes. Fo %: V2 the

lattice can be considered as an fcc primitive unit cell with a
basis of two rods, otherwise, the lattice symmetry is face
centered tetragonal (fct). This layered structure can be
derived from the diamond lattice by replacing the (110)
chains in the diamond structure by these rods. An example
of the stacking sequence is indicated in Fig. 1 for a square-
rod structure. We will define the z-axis to lie along the
stacking direction, and the x- and y-axes to be at 45° to the
axes of the rods within the layers. Based on the above
stacking sequence, this new structure can have the following
variations: (i) The structure should be made out of materials
having different refractive indices. We can choose to have
the high dielectric materials forming the rods, or we can
choose the structure to have cylindrical holes of low
dielectric material in a block of high dielectric material. (ii)
The ratio of the height, c, of the layer in the z-direction to
the repeat distance, a, along the layer can be varied to
optimize the band gap. (iii) The cross-sectional changes of
the rods are not critical to the performance of the structure,
in fact, circular, elliptical or rectangular cross-sections with
various aspect ratios also demonstrated sizable photonic
gaps. (iv) The rods between two layers can be touching
each other or can overlap to a certain extent. We show in
Fig. 2 our calculated photon bands for the new structure,
consisting of touching dielectric rods with refractive index
n=3.6 and filling ratio f = 26.6%. We find there exists a full
photonic band gap in which EM waves are forbidden to
propagate in any direction. The frequency at which the



414 PHOTONIC BAND GAPS IN THREE DIMENSIONS

FIG. 1 This figure schematically illustrates the design of
the new 3D photonic band gap crystal based on dielectric
rods. The structure is built by an orderly stacking of
dielectric rods (rectangular in the case shown).

lowest photon gap is-centered (called the “midgap”
frequency) is inversely proportional to the repeat distance a.
For example, to obtain a frequency gap in optical
frequencies, the repeat distance will be submicron, while
for microwaves, the repeat distance will be in the millimeter
range. Models of this new structure were fabricated!6 in the
millimeter length scale and experimentally shown16 to
possess a full photonic band gap in the microwave region,
in .agreement with the predictions of our theoretical
calculations. We have made a systematic examination of the
photonic band gaps of the above structures. For proper
choices of refractive index contrasts and volume ratios, the
structures exhibit full photonic band gaps of appreciable
widths. :
In all the cases we examined, the distance, a,
between the layers was kept constant and the width, w, of
the rods was varied to change the filling ratio. We found
that-when we fixed the refractive index at 3.6, photonic band
gai)s exist over a wide region of filling for both dielectric
cylinders and cylindrical holes. We plot in Fig. 3 the
calculated’size of the forbidden gap normalized to the
midgap frequency for both cases. For cylindrical holes
arranged’in the way shown in Fig. 1 a maximum gap to

midgap ratio Aw/wg of 25% is found at f ~ 82%, whereas

for the case of dielectric rods Aw/wg can reach 18% at f ~
30%../In both of these cases, the ratio of the repeat distance
inithez-direction (c) to the repeat distance in the x-and y-
directions;(a) is'taken to be 1.414 and the cylinders or
cylindricaliholes :are:allowed to. overlap. We have also
‘performedjcalculations for either cylindrical holes and
dielectric’cylinders, with elliptical cross sections of different
aspect ratios." The results are not very sensitive to the aspect

rati,‘in’particular for aspect  ratios of to 1.25 the Aw/ wg
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FIG. 2 Calculated photonic band gap for the new 3D
layer dielectric structure (shown in Fig. 1) consisting of
rectangular rods of refractive index 3.6 in an air
background. The filling ratio of the dielectric material is
26.6%. The frequency is given in units of co/a, where cg is
the velocity of light in vacuum and a is the distance between
the rods in the x- and y- directions. In this case c/a=1.22.
Bands are plotted along important symmetry lines of the
Brillouin zone.

can reach 28% at f ~ 82% for the cylindrical hole case. We
have also performed calculations for dielectric cylinders with
rectangular cross-section of different aspect ratios. The

dependence of Aw/wg of touching rectangular rods with
n=3.6 on the ratio c/a is shown in Fig. 4. Notice that there

is an optimum value of c/a that gives the maximum Aw/ wg.
As c/a increases above 1.5 or decreases below 0.8, the
maximum gap to midgap ratio decreases dramatically. We
found that the circular, elliptical, and rectangular dielectric
rods give roughly similar results, if the filling ratio, f, the
refractive index, n, and the ratio c/a are kept constant in
each case indicating insensitivity of photonic band gap to
structural details.

Another important fact that our theoretical
calculations give for this new layer structure is the minimum
refractive index contrast required for the onset of photonic
band gaps. It is found that a minimum refractive index
contrast around 1.9 is necessary to produce a photonic band
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FIG. 3 Gap to midgap frequency ratio (Aw/wg) as a
function of the filling ratio for the case of dielectric rods in
air and cylindrical holes in a dielectric. The refractive index
of the material is chosen to be 3.6 and 2.33, and c/a=1.414.
The dotted line is for cylindrical holes with elliptical cross
section and aspect ratio of 1.25, for which the largest band
gap was found.
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FIG. 4 Gap to midgap ratio (Aw/wyg) as a function of
filling ratio for touching rectangular dielectric rod structures
(shown in Fig. 1) with different c/a ratios and n=3.6. For
each curve, the filling ratio was varied by changing the
width of the rods and keeping c and a constant.

gap in these structures. This is very important, because in
the optical region there are many transparent optical
materials available with a refractive index above 1.9.

All the results presented above were obtained with
the plane-wave expansion technique, which gives accurate
band structures for EM waves propagating in either 2D or
3D periodic dielectric structures. The plane-wave expansion
technique for EM waves is now well developed. However,
most of the theoretical techniques concentrate on the
calculation of the dispersion of the photon bands in the
infinite periodic structure, while experimental investigations
focus mainly on the transmission of EM waves through a
finite slab of the photonic band gap patterned in the required
periodic structure. -Even with the knowledge of the photon
band structure, it is still a non-trivial task to obtain the
transmission coefficient for comparison with experiment.
Another quality important for the design of photonic band
gap experiments and devices is the ‘attenuation length for
incident EM waves inside the photonic band gap. Another
topic of interest is the behavior of impurity modes associated
with the introduction of defects into the photonic band gap
structure. While this problem can be tackled within a plane
wave approach using the supercell method!1,12 where a
single defect is placed within each supercell of an artificially
periodic system, the calculations require prohibitive amounts
of computer time and memory. Recently, Pendry and

MacKinnon13 introduced a complimentary technique for

studying photonic band gap structures. Their method has .

the advantage that the transmission coefficients and
attenuation coefficients for incident EM waves of various
frequencies can be obtained directly from the calculations.
We have also calculated the transmission coefficient for the
new structure introduced here and fabricated and measured
in the‘microwave regime by Ref. 16. The theoretical results
agree reasonably well with the experiment. To support this
statement, we present in Fig. 5 the experimentally measured
and the theoretically calculated attenuation at the midgap
versus the number of unit cells. At midgap we theoretically

versus the number of unit cells for the layer structure shown
in Fig. 1. The refractive index of the cylindrical alumina
rods is 3.1, their diameter is 0.318cm and the distance a
between the rods in a plane is 1.123cm. The solid circles
present the theoretical results, while the solid squares are the
experimental results.

find an attenuation of 21 dB per unit cell, while the
experiment gives a value of 17 dB per unit cell. This
information is very important, since it clearly states that the
photonic band gap crystal need not be many layers thick to
expel the EM wave effectively. Our theoretical calculations
suggest that even a two conventional unit cell structure (for
a total of 8 stacked layers) will give a photonic band gap
with 42 dB attenuation, which is large enough for many
applications. We also want to stress that the transmission
coefficient method can be efficiently used even in cases

where the diclectric constant, €, is frequency dependent or

when € has large imaginary values.

In conclusion, we have introduced a new and very
practical 3D periodic dielectric structure constructed out of
layers of dielectric rods. This new structure possesses a
full photonic gap, for refractive index contrasts as low as
1.9. Furthermore, this new 3D layer structure is amenable
to fabrication at a submicrometer scale by conventional
epitaxial methods, and, therefore, one avoids the problems
associated with drilling holes by reactive ion etching.
Finally, our band structure results for this new structure are
complemented by studies of the transmission coefficient
versus frequency, which directly compare with
experiments. At midgap an attenuation of 21 dB per unit cell
is obtained, which suggests that only a few layers are
necded to produce photonic band gap materials with
appreciable attenuation (more than 50 dB). This new
structure has the potential to solve the only outstanding
problem in the photonic band gap field, that is the
microfabrication of a photonic structure at optical
wavelengths. .
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